
www.manaraa.com

ORIGINAL ARTICLE

A service pattern model for service composition
with flexible functionality

Chien-Hsiang Lee • San-Yih Hwang • I-Ling Yen •

Tao-Kang Yu

Received: 8 December 2013 / Revised: 15 April 2014 / Accepted: 23 June 2014 /

Published online: 5 July 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract A key feature with service-oriented-architecture is to allow flexible

composition of services into a business process. Although previous works related to

service composition have paved the way for automatic composition, the techniques

have limited applicability when it comes to composing complex workflows based on

functional requirements, partly due to the large search space of the available ser-

vices. In this paper, we propose a novel concept, the prospect service. Unlike

existing abstract services which possess fixed service interfaces, a prospect service

has a flexible interface to allow functional flexibility. Furthermore, we define a

meta-model to specify service patterns with prospect services and adaptable

workflow constructs to model flexible and adaptable process templates. An auto-

mated instantiation method is introduced to instantiate concrete processes with

different functionalities from a service pattern. Since the search space for auto-

matically instantiating a process from a service pattern is greatly reduced compared

to that for automatically composing a process from scratch, the proposed approach

significantly improve the feasibility of automated composition. Empirical study of

the service pattern shows that the use of the proposed model significantly outper-

forms manual composition in terms of composition time and accuracy, and simu-

lation results demonstrate that the proposed automated instantiation method is

efficient.

Keywords Web service composition � Service pattern � Meta-model �
Variability modeling

C.-H. Lee � S.-Y. Hwang (&) � T.-K. Yu
Department of Information Management, National Sun Yat-Sen University, 70 Lienhai Rd.,

Kaohsiung 80424, Taiwan, ROC

e-mail: syhwang@mis.nsysu.edu.tw

I.-L. Yen

Computer Science Department, University of Texas at Dallas, Richardson, TX, USA

123

Inf Syst E-Bus Manage (2015) 13:235–265

DOI 10.1007/s10257-014-0251-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-014-0251-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-014-0251-6&domain=pdf

www.manaraa.com

1 Introduction

Service-oriented architecture (SOA) is an important technology designed to aid

agile enterprise in response to the ever changing market (Cummins 2008; Erl 2005).

SOA establishes an architectural model that aims to enhance the efficiency, agility,

and productivity of enterprise by positioning services as the primary means (Erl

2007). By reusing services and composing services into composite version,

innovative applications can be developed quickly and at lower cost. There have

been CASE tools that support the development of composite Web services by

considering business process management (IBM 2011; Oracle 2011; SAP 2011).

However, business process analysts still have to manually plan the workflow and

then consult IT staff to deploy workflow-based service composition by linking

automated activities with Web service operations. It demands considerable effort for

service composition.

To reduce the effort of service composition, many researchers have proposed

approaches that mostly adopt reasoning techniques, such as planning and logical

reasoning, to automatically compose Web service operations to satisfy a given goal

(Akkiraju et al. 2006; Chen et al. 2009; Doshi et al. 2004; Pistore et al. 2005; Sirin

et al. 2004; Zeng et al. 2008). However, many business processes are complex, and

the automated composition techniques have limited applicability due to the

difficulties in building comprehensive planning domain and the scalability problem.

In addition, agile enterprise requires flexible service composition strategy to

assist information system developers in developing flexible and adaptable solutions

that span a wide variety of requirements for changing environments. Flexible

service interface and configurable design are required to accommodate new

requirements (Kapuruge et al. 2010; Ruokonen et al. 2008). The capabilities of

service composition in terms of its interface have to be changeable to support its

users in different contexts (Nguyen et al. 2011b). Abstraction and reuse of core

logics from existing service compositions could improve composition efficiency and

produce less error-prone processes (Ruokonen et al. 2008).

Workflow templates approach is a basic solution toward building a flexible

workflow in a service composition. General workflow templates are in a form of

abstract workflows, where component services can be concrete or abstract. An

abstract service has well-defined I/O data types, precondition, and effects,

abbreviated IOPE, yet is not executable. It should be grounded to some concrete

service before execution. A lot of works are proposed to consider QoS-driven

service composition based on workflow templates, where different concrete services

are selected to ground the abstract services to satisfy different QoS goals or request-

specific constraints (Geebelen et al. 2008; Gil et al. 2011). Thus, workflow

templates are adaptable in QoS but still very specific and have no flexibility in

functionality. In fact, a workflow template is considered as an abstract composite

service in a formal model and its IOPE definitions are fixed.

On the other hand, research in variability modeling focuses on modeling flexible

workflows capable of changing control flows and substituting constitute services to

accommodate possible behaviors in different contexts. Some adaption methods,

such as adaptation patterns (Döhring and Zimmermann 2011), configuration

236 C.-H. Lee et al.

123

www.manaraa.com

operations (Gottschalk et al. 2008), and adaption rules (Kumar and Yao 2012), are

proposed to instantiate different workflow variants from a base workflow. The major

purpose of these works is to improve maintainability of service composition by

modeling a complex service composition, which could support expected behaviors

in various situations, without maintaining a lot of similar workflows (Döhring et al.

2014; Smirnov et al. 2012). They are also confined in narrow applications and

incapable of supporting unexpected new requirements.

To overcome the limitations of previous works and to provide flexible service

composition, we propose a service pattern approach by which flexible service

interface and adaptable workflow are included in a process template, called service

pattern, for versatile capabilities. In other words, it is desirable that the IOPE

definitions of a service pattern is nondeterministic so that it can be instantiated into

different abstract workflows with fixed IOPEs and subsequently grounded into

different concrete workflows.

Frequently, there exist multiple workflows offering similar yet different

functionalities. With the service pattern concept, it is possible to express a set of

similar workflows by one service pattern. In enterprise systems, a service pattern

can be used to express similar operations in the organization. With the popularity of

SaaS, many providers are now building platforms to allow users to compose

services to achieve configurability so as to fulfill various customer needs. Various

workflows in a SaaS system are frequently similar and can be expressed as a single

or a few service patterns to greatly reduce the time and efforts of the service

composition tasks by the end customers. More importantly, a service pattern offers

the possibility of constructing a novel abstract workflow that is similar to yet

different from all the existing workflows.

In this paper, we develop a meta-model for representing service patterns and a

suite of techniques to instantiate them into concrete service compositions that meet

different user needs. Our contributions include:

• We extend BPMN notation to formally define the service pattern model. The

unique features, such as nondeterministic service specifications and adaptable

flow structures, leverage existing service composition techniques and achieve

flexible functionality, resolving the functional inflexibility problem found in

existing workflow templates.

• A systematic instantiation process is outlined in the paper. A designer can step

by step define the instantiation parameters for the target application system

without needing to fully understand the internals of the pattern.

• We develop a rule-based reasoning technique that automate the process

instantiation, service selection, and grounding of a service pattern. A set of

interference rules are defined to facilitate reasoning. This further reduces the

efforts for service composition. Also, due to the use of service patterns, the

problem space for reasoning is highly confined, making reasoning a feasible and

efficient solution in the composition process.

• We conduct an empirical study to evaluate the effectiveness of the proposed

meta-model and a simulation study to measure the performance of the

automated instantiation method. The result of model evaluation shows that the

A service pattern model for service composition 237

123

www.manaraa.com

meta-model outperforms the other two baseline methods, which manually create

process from scratch and consult similar service compositions, in terms of

composition time and accuracy. The experimental results on the proposed

reasoning method demonstrate that the proposed method consumes reasonable

time, i.e., below two seconds for over 300 candidate Web services.

The rest of this paper is structured as follows. In Sect. 2, we summarize some

related works. Then, a motivating example is introduced to manifest the research

problem in Sect. 3. In Sect. 4, we describe our proposed model and illustrate the

model by using a service pattern example. Next, we describe the automatic

instantiation process in Sect. 5. Experimental results for the proposed model and the

instantiation method are presented in Sects. 6 and 7 respectively. Finally, Sect. 8

concludes the paper.

2 Literature review

It is well recognized that manually composing Web services to satisfy a particular

requirement is a tedious work, and there have been many proposed works that seek

to automatically compose Web services to achieve a given goal. Research in this

line treats automatic Web service composition as a planning problem. Several

planning techniques are proposed, including rule-based planning (Medjahed et al.

2003; Ponnekanti and Fox 2002), hierarchical task network planning (Sirin et al.

2004), planning based on model checking (Pistore et al. 2005), and planning based

on Markov decision processes (Chen et al. 2009; Doshi et al. 2004). However, due

to the high complexity pertaining to the service function and requirement

description and the often large number of available services, it is difficult to reason

in a realistic environment without additional assistance.

As automatic service composition proves to be a difficult task, some researches

focus on workflow templates, which are generally regarded as abstract workflows

with components services being abstract. This concept is actually implicitly

incorporated in OWL-S where services’ IOPE can be specified without specific

grounding. In some works, the workflow of service composition can be adapted

according to parameter values (Fu et al. 2009; Geebelen et al. 2008). Most works,

however, consider dynamic composition for the workflow by selecting different

services to satisfy different QoS goals or request-specific constraints (Geebelen

et al. 2008; He et al. 2008; Yang et al. 2009). They generally consider verbal based

flow description and then instantiate the template with specialized concrete services.

They allow for the substitution of concrete Web services to achieve QoS goals but

are still very specific and lack of flexibility in functionality.

In addition, there have been some works (Amarouche et al. 2011; Barhamgi et al.

2010; Hwang et al. 2012) that intend to select and compose data-providing (DP)

services into an execution workflow for data integration. Barahmgi et al. (2010)

employ query rewriting to find the services conforming to data semantics of query

request and generate executable service composition after confirming that all

variables of query request are correctly covered by the identified services. Based on

238 C.-H. Lee et al.

123

www.manaraa.com

the work of Barahmgi et al. (2010), Amarouche et al. (2011) propose methods to

handle the semantic conflicts of data exchange between component services, such as

the conversion between different measuring units. Hwang et al. (2012) represent the

causal relationship between exchange variables of DP service types using Bayesian

network model and intend to find the service composition that provides more

available data for the users. In addition to data manipulation services, our work

integrates flow adapting controls and prospect services into our proposed model to

enhance the function flexibility of service patterns. To the best of our knowledge,

both function flexibility and message mismatch resolution are seldom considered in

previous works.

Based on the idea of variability management in software product line domain

(Pohl et al. 2005), some recent works propose to accommodate several variation

points in the workflow of composite Web service, and these variation points allow

users to adapt workflow or replace services to build customized composite Web

services. In addition to common functionality, the customized composite services

provide assorted services for different users. Therefore, variability modeling is

crucial and variability types differ at different abstraction levels. At the feature

level, customizable function items for different user requirements are major

consideration and they are categorized as common, optional, and alternative

features. Common features are required function items for all users, optional

features were either included or excluded, and alternative features have several

variants for choice (Abu-Matar and Gomaa 2011; Nguyen et al. 2011a).

To represent flexible workflow, some works consider variability at the model

level to instantiate workflow variants. The variation points, including possible

alternatives under different situations, are embedded in workflow template to

provision workflow adaptation. The adaptation of workflow could be realized from

simple alternative selection to a series of workflow adjusting operations. For

example, Mietzner and Leymann define variability descriptor including the location

of variation points and their alternative, and transform a template BPEL process into

customized BPEL processes according to users’ choice of alternative in the

descriptor (Mietzner and Leymann 2008). Kumar and Yao propose an algorithm in

which the predefined adaption rules trigger some adapting operations, e.g. remove,

insert, and replace, on template process to produce process variants (Kumar and Yao

2012). Döhring and Zimmermann introduce adaption patterns that define specific

adapting actions for particular event to support sophisticated adaptation (Döhring

and Zimmermann 2011). However, a complex workflow template that incorporates

variability often times is difficult to comprehend. In addition, they only consider

expected behaviors for different situations but fail to support unexpected new

requirements.

3 A motivating example

Store sales data are often analyzed in a business setting to help make various

business decisions. Frequently, to support effective analysis, other database tables

need to be joined to provide more information about sale items for different usages,

A service pattern model for service composition 239

123

www.manaraa.com

e.g. product safety stock for stock replenishment and product unit cost for profit

computing. From the joined table, specific data can be selected, then aggregated

horizontally or combined vertically to obtain summarized results that support

various types of decision making, e.g., stock replenishment, profit computing, and

order fulfillment. Additional tasks, such as currency and metric conversions, and

format conversions for subsequent activities, may be needed, especially for

international business. Furthermore, different execution sequences in a sub-

workflow, such as skipping some services, allowing different processing orders,

or providing alternative sub-workflows, etc. can be provided to offer a flexible high

level business process. This general business process can be captured by a general

composite service, denoted using BMPN, as shown in Fig. 1.

In Fig. 1, GetStoreSales and GetProductProfile services retrieve sales data and

product data respectively, which are subsequently combined to form a joined table.

The SelectRequiredData service then filters the table and selects data entries from

the table that satisfy some given criteria. ConvertByCurrency and ConvertByUnit

are offered as skippable services that process monetary or quantitative attributes to

assure consistency. Then, aggregating sales data by specific attributes and

combining the aggregated data with some extended data could be needed to

produce more complete sales data. After that, some required data are extracted and

organized according to the format needed by subsequent activities. Finally, the core

services AggregateExistingAttributes and DeriveNewAttributes accept the data

produced by prior services, then aggregate the input attributes and derive new

attributes. For different purposes, these final services may be executed in different

sequences and the latter task may be skipped in some cases as shown in exclusive

choices in Fig. 1.

The general composite service can be instantiated into several processes with

different functionalities. In Fig. 2, three workflows instantiated from the general

composite service are shown, including (1) the replenishment workflow, abbreviated

RPW which derives the quantity of ordered items from their sales quantity, stock

quantity, and safety stock; (2) the profit computation workflow, abbreviated PCW,

which calculates net profit from sales amount and store expenses in a given time

period; and (3) the order fulfillment workflow, abbreviated OFW, which aggregate

customer’s order amount, charge money for order, and then derive a delivery plan

for shipping.

In order to achieve flexibility and efficiency, some requirements are essential for

the meta-model formulating service patterns with functional flexibility. First, the

control and data flow in the pattern should be adaptable. Second, the specification of

component services in the pattern should be customizable to fit special requirements

under different contexts, rather than a fixed functional specification. For instance,

the DeriveNewAttributes and AggregateExistingAttributes services in Fig. 1 are

instantiated into different concrete services with different functionalities in the three

concrete workflows in Fig. 2 yet preserving the common behavior of computing

based on column-wise aggregations. Furthermore, all of them have similar behavior

pattern but different contents. For example, Replenish, ComputeProfit, and Shipping

services derive new attributes, namely order quantity, store profit, and shipper,

respectively, from sales and products data. Third, additional constraints should be

240 C.-H. Lee et al.

123

www.manaraa.com

enforced during pattern instantiation to avoid message mismatches between

cooperative services or type incompatibility between customizable services and

their concretized counterparts. For example, in Fig. 2a, Replenish service accepts

the output of ExtractData service, so input type of Replenish service should be

equivalent to output type of ExtractData service. Therefore, message flow

declaration for message validation and message type restriction for customable

message type are crucial to the proper instantiation of a service pattern.

GetStoreSales GetProduct
Profile

ConvertBy
Currency

ConvertBy
Unit

AggregateSales
by Attributes

Aggregation
Required

Otherwise

In case of multi-
currency

In case of multi-
metric

Otherwise

Derive new
attributes

Aggregate
existing

attributes

Derive new
attributes

Aggregate
existing

attributes

Combine Sales
and Product

Select required
data

Combine
extended data

Extract data

Aggregation
required

Otherwise

Derivation
Required

Otherwise

Fig. 1 An example of general composite service

A service pattern model for service composition 241

123

www.manaraa.com

4 Service pattern model

Various standards, such as OWL-S and BPMN, have been proposed for service and

process specification. Although BPMN provides strong support in workflow

specification, a workflow defined in BPMN cannot realize other functions beyond its

original scope. To increase functional flexibility, we propose the new concept

‘‘prospect services’’ and ‘‘adaptable workflow’’ as the major service pattern

elements, allowing them to be defined with specific yet flexible properties that are

controlled by instantiation parameters. Also, we extend BPMN model to support the

specification of the service patterns. In the following two subsections, we introduce

the two major service pattern elements, prospect services and adaptable workflow

templates, with their corresponding instantiation parameters. In Sect. 4.3, we

formally define the service pattern.

4.1 Prospect service

We propose prospect service containing nondeterministic IOPE specification to fit

the essential requirement of supporting customizable specification with functional

flexibility as described in Sect. 3. In OWL-S, IOPE are defined in the upper

ontology to describe the behavior of a service. A concrete or an abstract service has

well-defined IOPE. A prospect service, on the other hand, contains partially

specified IOPE. The differences of concrete service, abstract service, and prospect

service are summarized in Table 1.

GetStoreSales GetProduct
Profile

ConvertByUnit

Aggregate
sales quantity
by store and

SKU

Replenish

(a) Replenishment
workflow (RPW)

GetStoreSales
GetProduct

Profile

ConvertBy
Currency

Aggregate
sales amount

by store

Compute
Profit

(b) Profit computation
workflow (PCW)

GetStoreSales
GetProduct

Profile

MakePayment

(c) Order fulfillment
 workflow (OFW)

Shipping

Join Product
Data

Select Laptop
Computer
Products

JoinProduct
Inventory

Extract store,
SKU, SaleQty

Join Product
Data

Select
Confirmed Sales Join

 Expenses

Extract store,
and aggregated

sale amount

Join Product
Data

Select
Confirmed Sales

Extract member
id, SKU, sale
amount, and
sale quantity

Fig. 2 Three workflow-based service compositions

242 C.-H. Lee et al.

123

www.manaraa.com

The I/O messages of prospect service can have customizable data types, which

includes data type parameters that are to be fully defined during instantiation. Its

preconditions/effects can have customizable predicates, which includes predicate

parameters to be defined at instantiation time. These data type and predicate

parameters are called instantiation parameters, which are denoted with prefix ‘‘?’’ in

this work. The value of instantiation parameters is assigned at instantiation time to

concretize the specification of prospect service for realizing specific functionality.

Figure 3 shows an example specification of a prospect service, where instantiation

parameters are in bold.

The prospect service, DeriveData, derives new attributes from existing attributes.

Its input and output messages use customizable data types, namely ?TypeOfDrvIn

and ?TypeOfDrvOut, respectively. In addition, restrictions can be specified for

customizable types using first-order logic, which can be a specific class in a domain

ontology and/or the relations between the output schema and the input schema. For

example, the following rules restrict that ?TypeOfDrvIn and ?TypeOfDrvOut must

map to the Table concept in the domain ontology (Anonymous 2007).

ModelRef(?TypeofDrvIn) = Ont#Table

ModelRef(?TypeofDrvOut) = Ont#Table

Also, DeriveData prospect service includes two predicate parameters, ?cpDe-

riveDataPrecond() and ?cpDeriveDataEffect(), with which the precondition and

effect of it can be customized to fit different requirements. In Fig. 3, DeriveData

combines concrete and customizable effects to declare the desired outcomes with

functional flexibility. The concrete effect of DeriveData specifies that each input

tuple has a corresponding output tuple and each output tuple must be computed from

one input tuple. At instantiation time, the specific predicates can be given to

concretize these predicate parameters so that specific functionality for the service is

specified. For example, to fulfill the requirement of replenishment in B2B

environment, developers may want to match prospect service DeriveData with

the concrete service that not only derives order quantity but also automatically sends

orders to B2B partners. Correspondingly, the developer can do the following

assignment for predicate parameter ?cpDeriveDataEffect:

?cpDeriveDataEffect(?TypeOfDrvOut: DrvOut) = (Ve3[DrvOut, Sent2Partner(e3))

4.2 Adaptable workflow template

To make the workflow of service pattern flexible, we propose the adaptable

workflow template, in which some data manipulation services, flow adapting

Table 1 The differences among three types of services

Service type IOPE specification Grounding information

Concrete service Specific Specific

Abstract service Specific Undefined

Prospect service Partially defined Undefined

A service pattern model for service composition 243

123

www.manaraa.com

controls, and message alignment are included to allow tailoring workflow for

specific purpose besides prospect services. Each constituent service in an adaptable

workflow template can be concrete, abstract, or prospect. We also propose a special

kind of concrete services, called data manipulation service, which is capable of

handling data transformation for facilitating data exchange between constituent

services. Data manipulation services resolve message mismatch problem between

constitute services to promote service reuse when their functions fit the requirement

yet the I/O types do not perfectly match. This kind of services includes selection,

join, and extraction operations like relational algebra and their features can be found

in our previous work (Lee and Hwang 2009).

We define two types of flow adapting controls: the alternative selection and the

skippable toggle. An alternative selection is an ordered pair\ae, SW[, where ae is

an instantiation parameter with enumerated type and SW is a set of sub-workflow

alternatives, each associated with a case value. At instantiation time, an instantiation

parameter value of ae is specified to choose one of the alternative sub-workflows. A

skippable toggle is an ordered pair \s, ab[, where s is a service and ab is an

instantiation parameter with Boolean type. During instantiation, the value \s,

TRUE[(\s, FALSE[) indicates that the service s is (not) skipped. As a result, the

tailored workflow retains only non-skipped services.

The routing constructs, e.g. sequence and parallel, can be used to define the

execution paths in a workflow, but we also need constructs for specifying the

message exchange between component services. Generally, the output of a

preceding service is fed to the input of some succeeding service(s). Therefore,

source parameters and destination parameters for a message exchange must be

precisely specified. This is especially important in a service pattern because the

specified data type parameters at instantiation time must be in line with the message

exchanges specified in the service pattern. Due to the lack of such feature at design

time in existing models, we define a new construct, message alignment, to connect

the I/O parameters of interacting services. A message alignment is a quadruple,\ss,

sd, vs, vd[, where ss and sd are the source and destination services, respectively, and

vs and vd are the formal output variable of source service and input variable of

destination service, respectively.

In summary, we extend BPMN by developing five more new symbols for the

above extended features as shown in Fig. 4. They can be applied to BPMN process

models to prescribe adaptable workflow template of service patterns.

Fig. 3 An example specification of a prospect service

244 C.-H. Lee et al.

123

www.manaraa.com

4.3 Service pattern

A service pattern is specified by an adaptable workflow template and flexible IOPE

that are partially defined by instantiation parameters. To support instantiation, a

service pattern interface should also include the specification of its instantiation

parameters.

Definition (Service pattern) A service pattern is defined by the tuple,\I, O, P, E,

IP, WT[, where I(O) is the set of input (output) parameters, P and E are sets of

preconditions and effects, respectively, IP is a set of instantiation parameters, and

WT is an adaptable workflow template.

The interface definition for the example service pattern, SalesCube, is shown in

Fig. 5. Note that SalesCube can be instantiated to any of the three example

workflows in Fig. 2. The adaptable workflow template of SalesCube is shown in

Fig. 6 using the extended BPMN symbols as shown in Fig. 4; and, the IOPE

specification of the involved prospect services are shown in Fig. 7. In Fig. 5,

SalesCube takes several concrete input arguments, including the store list (In_sl),

the extracting attributes (In_ea), the period of data (In_tp), the target currency

(In_cu), the aggregating attributes (In_ga), and a customizable input In_ed, which

has a customizable data type ?TypeOfEd. The output variable Out also has a

customizable data type ?TypeOfOut. The concrete precondition and effect are also

specified to restrict that the input store list cannot be empty, the period of sales data

must be at least 7 days earlier, and the output cannot be empty.

The instantiation parameters in Fig. 5 include data type parameters and predicate

parameters for IOPE customization of service pattern and prospect services, as well

as workflow adapting parameters for workflow adaptation. The restriction of data

type parameters, as mentioned before, can also be specified. For example, at

‘‘restriction of data type parameters’’ section,?TypeOfEd, ?TypeOfOut, and

several other data type parameters, are restricted to be of ‘‘Table’’ type, which is

defined in an ontology namespace ‘‘Ont’’. In addition, the key attributes of

?TypeOfJedIn, ?TypeOfed, and ? TypeOfJedOut must be the same, and the

attributes of ?TypeOfJedIn must be a subset of the attribute union of TSalesData and

? TypeOfed. The values of these parameters determine the workflow of service

composition during instantiation time.

The adaptable workflow template of SalesCube given in Fig. 6 is similar to Fig. 1

except that prospect services, data manipulation services, and flow adapting controls

are incorporated into it. Four prospect services, shown in Fig. 7, provide a wide

variety of functionalities to choose from. As a result, SalesCube can be instantiated

into several service compositions with dissimilar functionalities when the involved

prospect services are concreted as disparate services for different purposes. In

addition, two service skippable toggles are attached to ConvertByCurrency and

ConvertByMetric services in order to flexibly combine these features on demand,

and two alternative selections are encompassed to construct two alternative

execution paths. Also, message alignments are added in Fig. 6 to facilitate

compatibility validation of the connected I/O arguments after their types are

concretized. Consider mf10 message alignment, it connects the output variable of

A service pattern model for service composition 245

123

www.manaraa.com

Prospect service

Service skippable
toggle

Alternative selection

Data manipulation
service

mfn Message alignment

S

Fig. 4 Symbols of extended
features for the adaptable
workflow template

Fig. 5 IOPE specification and instantiation parameters of SalesCube service pattern

246 C.-H. Lee et al.

123

www.manaraa.com

ExtractData service to the input variable of DeriveData service. Thus, the data type

of ExtractData’s output should be compatible with the data type of DeriveData’s

input. The validation of type compatibility should be performed at the instantiation

time. Other message alignment mfi, for each i, can be validated in the same way.

4.4 Service pattern instantiation

Based on application requirements, the instantiation of a service pattern involves the

assignment of instantiation parameters, which will have the following effects: (1)

unselected alternative sub-flows and skipped services are eliminated according to

the assignment of workflow adapting parameters; (2) prospect services are

transformed into abstract services by instantiating nondeterministic data types and

predicate parameters according to the assignment of data type parameters; (3)

message alignments are checked, instantiated data types are validated against the

GetStoreSales
GetProduct

Profile

ConvertBy
Currency

ConvertBy
Metric

AggregateData
byMulti-

dimensionsCube

Flat

DeriveData

DeriveFirst

AggregateData DeriveData

AggregateData

AggregateFirst

Legend: Concrete/abstract
service

Prospect service

Service skippable toggle

mf1
mf2

mf3

mf4

mf5

mf6

mf7

mf8

mf9

mf10 mf12

mf11 mf13

S

S SS

S

Alternative selection

?ChooseFormat

?ChooseComputeOrder

Join
ProductData

Data manipulation
service

SelectData

Out

Outf1 Outf2

In_ed

inf3

mfn Message alignmentIn_sl
inf1

inf2

Combine
ExtendedData

ExtractData

Fig. 6 The adaptable workflow template of SalesCube service pattern

A service pattern model for service composition 247

123

www.manaraa.com

constraints of the corresponding customizable data types and mismatches of data

types between interacting services are resolved; (4) same as the regular

matchmaking process, the abstract services are matched with concrete instances

to build an executable workflow-based Web service composition. Note that step 4

will not be discussed in this paper as it is the typical QoS-based service selection

problem and a lot of researches have been devoted to it, as described in Sect. 2.

Based on the specification of SalesCube service pattern, as shown in Figs. 5, 6,

and 7, we use RPW, as shown in Fig. 2a, as an example to demonstrate the

instantiation process. At first, we assign values to the instantiation parameters for

RPW. In this case, the extended data of type TProdInv, indicating product

inventory, and the desired output of type TOrder, indicating product order, and they

are specified as follows.

?TypeOfEd = TProdInv;

?TypeOfOut = TOrder

Among the four skippable services, RPW does not need ConvertByCurrency and

AggregateData services but requires ConvertByUnit and DeriveData services.

Accordingly, the binding of instantiation parameters can be specified as follows:

Fig. 7 The IOPE specification of involved prospect services in SalesCube service pattern

248 C.-H. Lee et al.

123

www.manaraa.com

?SkipConvertByCurrency = True;

?SkipConvertByUnit = False;

?SkipDeriveData = False;

?SkipAggregateData = True;

On the other hand, RPW has to aggregate sales by store and SKU, and combine

inventory information. Therefore, the instantiation parameters of the two alternative

selections in Fig. 6 can be specified as follows:

?ChooseFormat = ‘Cube’;

?ChooseComputeOrder = ‘DeriveFirst’

Figure 8 lists the assignment of all instantiation parameters for RPW process.

Based on the values of workflow adapting parameters, the customized workflow

template is shown in Fig. 9.

We then consider data type compatibility checking and message alignment and

filter out those concrete services that do not satisfy some constraints. The remaining

concrete services can be used for grounding abstract services. Finally, a concrete

service is chosen and bound for each abstract service based on semantic constraints

or QoS tradeoffs. The instantiation of SalesCube service pattern into PCW and

OFW composite services can be conducted by following similar instantiation

process.

5 Automated instantiation parameter assignment

As mentioned in Sect. 4.4, instantiation parameters have to be assigned in order to

instantiate a service pattern. However, the user may not be capable of specifying all

instantiation parameters properly. The values of instantiation parameters depend on

the business requirements and software development environment such as existing

Web services and message schemas. Specifically, business requirements define the

goal, which involves input types, output types, and some of the instantiation

parameter values. The values of the other unspecified instantiation parameters,

however, can be determined by considering the existing Web services and message

schemas. For example, a data type parameter can be assigned a message type only if

all the prospect services that involve the data type have corresponding concrete Web

services that use the message type. Therefore, an assignment for instantiation

parameters is feasible only if it can be supported by the current software

environment. In this section, we describe a reasoning method that automatically

infers a feasible assignment for the unspecified instantiation parameters, if any, from

the existing Web services.

5.1 The system architecture

Consider the instantiation of a service pattern sp into a target composite service ts.

The first step is for the developer to specify the IOPE of ts, denoted ts.IOPE as well

as some instantiation parameters needed for the goal of ts. Next, instead of manually

A service pattern model for service composition 249

123

www.manaraa.com

building ts based on sp and ts.IOPE, we propose an automated tool to reason and

derive ts from sp, ts.IOPE, and the specified instantiation parameters. Since the

derivation is based on the blueprint provided by sp, the search space for reasoning is

greatly reduced, making it a feasible solution to significantly reduce the composition

efforts.

Figure 10 shows the architecture of our automated instantiation system. The

specifications of both service patterns and concrete services in the system are

represented as facts and stored in SP repository. When a developer wants to build a

target service ts, she/he first specifies ts.IOPE, which is converted into facts on the

fly and stored in the fact working memory.

We used Jess v7.1p2 as the rule engine and employ the forward-chaining method

in the automated instantiation reasoning process. In Jess, some rules have to

consider the related facts as a whole but each fact can only trigger one rule at a time.

Therefore, we divide the reasoning process into three stages to gradually build the

needed facts.

First, the matchmaking rules are applied and the set of concrete services that

matches each prospect service in the pattern is identified, resulting in a number of

facts added into the fact working memory. Second, for each potential set of service

selections, all the customizable data type parameters declared in message alignment

constraints are examined against the data consistency rule. If it is confirmed, a valid

message flow assertion will be put into the working memory. Finally, the condition

of feasible assignment is checked to verify whether an assignment is feasible. The

three stages and corresponding inference processes are introduced in the following

sections.

Fig. 8 The assignment of
instantiation parameters for
RPW process

250 C.-H. Lee et al.

123

www.manaraa.com

5.2 Matching rules in the first stage

The purpose of the first stage is to concretize nondeterministic IOPE of the prospect

services with assuring that the concretized specification conforms to restriction rules

on data type parameters and their precondition/effect specifications. We define two

rules to achieve the goal.

The first rule is to find out candidate data types for the nondeterministic I/O types

of each prospect service by referring to potentially matched services, which have the

same number of arguments as the prospect service and their I/O types match the

fixed I/O types of prospect service. Then, the candidate data types are obtained from

GetStoreSales
GetProduct

Profile

ConvertBy
Unit

AggregateSales

DeriveData

mf1
mf2

mf3

mf4

mf5

mf8

mf9

mf10

Join
ProductData

SelectData

Extract
Data

Join
ExtendedData

Out

mf11

In_edinf1

Fig. 9 The customized workflow for RPW

A service pattern model for service composition 251

123

www.manaraa.com

unmatched I/O part of potentially matched services. For example, in Fig. 11

CombineExtendedData prospect service has two nondeterministic I/O types,

?TypeOfEd and ?TypeOfJedOut. Suppose that there are two potentially matched

services, CombineStoreExpense and JoinProductInv, which have the same number

of arguments and the same concrete data types, i.e., TSalesData in this example.

Accordingly, there will be two assignments for the data type parameters

?TypeOfED and ?TypeOfJedOut, namely TExpense and TRevenuExpense from

CombineStoreExpense, and TProdInv and TSalesQty from JoinProductInv.

The second rule is to confirm the satisfaction of the restriction rules given in the

service pattern. If the candidate data types obtained from applying the first rule

comply with all corresponding restrictions, the second rule will insert type

assignment facts into the fact working memory. After the above reasoning, one

nondeterministic I/O type may be assigned with several specific data types. We will

Service pattern
specification

Reasoning stages

Feasible
?

Error
Report

Input

ts.IOPE

Feasible
assignment

Matchmaking
rules

Message flow
validation

Services
matchmaking

Facts storage

Fact
working
memory

Concrete service
IOPE specification

Alignment
rules

Goal checking
rules

Goal
checking SP

repository

Service
selection and

grounding

Build ts

Stop

WS
specification

transformation

SP
specification

transformation

Start

Fig. 10 The architecture of automated assignment reasoning

252 C.-H. Lee et al.

123

www.manaraa.com

further filter out incompatible assignments due to the violation of message

alignment verified in the next stage, which will be described in the next subsection.

In addition to the above rules, we also defined other rules that consider the facts

converted from the goal, such as the values of alternative selections and skippable

toggles specified by developer. Those rules assert new facts that represent the

employment of some prospect services according to developers’ choice and may

trigger the first rule.

5.3 Alignment rules in the second stage

In the second stage, we validate message alignments by checking whether data types

of connected parameters are compatible. We define three rules for this task:

rule 3: testing connected parameters of each message alignment for matched type,

rule 4: checking a sequence of message flow facts for consistent message

alignments, and

rule 5: removing false type assignment facts.

A prospect service may have several type assignment facts for its nondetermin-

istic I/O data types because there could be several potentially matched services with

different data types. Rule 3 considers the message flow facts obtained from message

alignments of service pattern and the type assignment facts asserted in the first

stage. If data types of source and destination parameters in message flow fact are

compatible, the rule will create a valid message flow fact that asserts the target

message flow connecting two cooperative service instances.

Name: CombineExtendedData
In: TSalesData JedIn, ?TypeOfEd JedEd
Out: ?TypeOfJedOut JedOut
Precondition: null
Effect: null

Prospect Service

Name: CombineStoreExpense
In: TSalesData Sales, TExpense Exp
Out: TRevenueExpense Out
Precondition: null
Effect: null

Potentially matched services

Name: JoinProductInv
In: TSalesData Sales, TProdInv Inv
Out: TSalesQty Out
Precondition: null
Effect: null

Candidate data types

?TypeOfEd = TExpense
?TypeOfJedOut = TRevenueExpense

?TypeOfEd = TProdInv
?TypeOfJedOut = TSalesQty

Fig. 11 Candidate data type deviation for an example prospect service

A service pattern model for service composition 253

123

www.manaraa.com

Even though a valid message flow fact is asserted, it may become false when it is

inconsistent with its preceding or succeeding valid message flow facts. For example,

consider the execution of a sequence of prospect services, CombineExtendedData,

ExtractData, and DeriveData in SalesCube service pattern in Fig. 6; there are two

message alignments, mf9 and mf10, that connect source and destination parameters

between two adjacent prospect services. Suppose that each of ExtractData and

DeriveData prospect services has two potentially matched services: PrepareRe-

plenish and PrepareReorder for ExtractData and Replenish and Reorder for

DeriveData; and CombineExtendedData prospect service maps to JoinProdInv

concrete service. After applying the first rule as mentioned before, for message

alignment mf10, there are two valid message flows: (PrepareReplenish, Replenish)

and (PrepareReorder, Reorder). On the other hand, for message alignment mf9,

there is only one valid message flow, (JoinProdInv, PrepareReplenish), because the

output parameter JedOut of JoinProdInv service is incompatible with the input

parameter ExtrIn of PrepareReorder service. Their relationships are graphically

displayed in Fig. 12, where the corresponding concrete services are shown in

parentheses and, three valid message flow facts are shown in red box beside the

message alignments. As can be seen, the sequence of valid message flows,

(JoinProdInv, PrepareReplenish)-(PrepareReplenish, Replenish), is the only con-

sistent message flows when considering both mf9 and mf10 message alignments.

Therefore, we conduct consistency checking between message flows in rule 4 by

examining the consistency of destination service instance and source service

instance for every message flow. The message flows validated by rule 4 are asserted

as valid message flows whereas the other flows are claimed as false message flows.

Finally, rule 5 removes all of type assignment facts involving false message flows.

Combine
ExtendedData
(JoinProdInv)

ExtractData
(Prepare

Replenish)

TSalesInvQty:

mf9

TSalesInvQty: ExtrIn

DeriveData
(Replenish)

TReplenishReq: ExtrOut

TReplenishReq: DrvIn

mf10

ExtractData
(Prepare
Reorder)

TOrderReq: ExtrIn

DeriveData
(Reorder)

TReorderhReq: ExtrOut

TReorderReq: DrvIn

mf10(PrepareReplenish, Replenish) (PrepareReorder, Reorder)

(JoinProdInv, PrepareReplenish)

Type Mismatch

(a) Consistent message flows (b) Inconsistent message flows

Fig. 12 The graphic presentation of mf9 and mf10 message flow facts

254 C.-H. Lee et al.

123

www.manaraa.com

5.4 Goal checking rule in the third stage

An assignment is feasible if and only if all specified data types satisfy restriction

rules, all message alignments are validated, or every prospect service has some

matched concrete service. Therefore, in the final stage, we define a rule by which all

facts deduced in previous stages are checked for a feasible assignment. The

antecedent of this rule includes the validity checking of all of message alignments,

alternative selections, and skippable toggle and the assurance that all of prospect

services are concretized with valid data types.

In case all of the conditions fit, the assignment for instantiation parameters is

pronounced to be feasible. However, the complete assignment of instantiation

parameters cannot be directly extracted from matched concrete services because

there may be several matched concrete services for a prospect service, but only the

matched instances conforming to the message alignments is a correct binding.

Therefore, we develop the extraction function to print out a set of complete

assignments for all instantiation parameters. Indeed, there may exist several

complete assignments and how to choose a ‘‘good’’ set of assignments is beyond the

scope of this paper.

6 Model evaluation

We conducted an empirical study to evaluate the effectiveness of the proposed

service pattern model. Subjects are selected to participate in the composition

processes of new composite services. The scenarios are based on land management

applications used by city governments in Taiwan, including land registration, land

rights transferring, and land division. Composition time and accuracy are two

dependent variables in the evaluation process. The service pattern model is

compared with two other methods: creation from scratch and creation using similar

service composition. The details of the experimental design and the results are

described in the following subsections.

6.1 Experiment design

We conducted a two-factor experiment with two dependent variables per subject,

and the two variables were experimental problems and methods for creating

composite services. Three service composition problems with different difficulty

levels were designed. The methods include manual composition from scratch, M1,

manual composition by adapting similar service composition, M2, and using service

pattern, M3. To solve a given problem using M1, each subject was provided with

description of candidate Web services and was asked to manually compose these

services to solve the problem. For M2, in addition to the description of candidate

Web services, each subject was given the service composition of a similar

application to help him/her manually compose a process for the experimental

problem. Finally, for M3, each subject was offered a service pattern from which a

composition can be instantiated.

A service pattern model for service composition 255

123

www.manaraa.com

We recruited 18 subjects who had more than 4 years of industry experience in

information systems design. All subjects had not worked on land management

domain, and no particular subjects would benefit from prior knowledge. After

one hour training of BPMN and our proposed model, subjects were asked to design

three compositions for three experimental problems. In addition, these experimental

problems were shown to have (statistically significantly different levels of

difficulties by one-way ANOVA on the subjects’ ratings. To measure the effect,

we recorded the time spent by the subjects in designing the composite service for

the experimental problems. Also, a domain expert was invited to evaluate the

accuracy of the subjects’ service compositions in the range of 0–100.

6.2 Data analysis and discussion

Figures 13 and 14 show the average composition time and the average accuracy of

the three methods across different experimental problems respectively, where P3 is

more difficult than P2, which in turn is more difficult than P1. It can be seen that the

proposed method M3 has the lowest mean composition time and highest mean

accuracy across all the three problems. From Fig. 13, we can see that the

composition time using M3 does not change significantly across problems of

different difficulty levels. This is attributable to the service pattern that provides a

good design practice and alternative features to the subjects. It can reduce the effort

of designing workflow and checking design validity. On the other hand, for M1, the

composition time grows when the difficulty level of problem increases. The

composition time for using M2 also remains approximately the same for different

problems. This shows that composition by adapting a similar workflow is also

effective. However, the average composition time using M2 is higher than using

M1. Now we consider composition accuracy as shown in Fig. 14. M3 again

achieves a similar accuracy level for all problems. It implies that service pattern can

help achieve stable design quality. Whereas, the design quality of M2 could be

affected by the suitability of the similar workflow selected for the problem and its

accuracy is unstable. We also performed the two-factor ANOVA to test the

composition time and composition accuracy in groups after assuring that the

variance of data in groups is homogeneous via Levene’s test. From the ANOVA

tables of composition time and accuracy, the effects of problem factor and

problem*method interaction are not significant and method effect is significant at

.05 level. Their F and p values are shown in Table 2.

We then conduct LSD post hoc tests for two dependent variables with the method

factor and the result is shown in Table 3. For composition time, M3 significantly

outperforms M1 at .01 level, yet it only outperforms M2 at .2 significance level. For

accuracy, M3 still significantly outperforms M1 at .01 level, and it is better than M2

only at .1 significance level. In addition to the obviously smaller sample size, our

interview with the participants reveals that most people are used to adapt existing

service composition for new requirement but they are slightly undertrained about

service pattern model with only one hour of training. If they had received more

practices about service pattern, both the composition time and the accuracy could

have been improved further.

256 C.-H. Lee et al.

123

www.manaraa.com

7 The performance evaluation of automated instantiation parameter
assignment

To evaluate the performance of the proposed reasoning method, we conduct three

experiments to reveal the execution times under different numbers of candidate

Web services, message alignments, and prospect services. We use SalesCube

service pattern and adopt the requirements of RPW in our experiments.

Specifically, the assignment given by the developer involves only RPW’s IOPE

and workflow adapting parameters. Moreover, we observe that more message

alignments or prospect services, as created by message alignment and prospect

services, may consume more time. To examine the impact of message alignment

0

20

40

60

80

P1 P2 P3A
ve

ra
g

e
C

o
m

p
o

si
ti

o
n

T

im
e

Experimental Problem

M1

M2

M3

Fig. 13 Average composition
time comparison over different
methods

0

20

40

60

80

P1 P2 P3

A
ve

ra
g

e
A

cc
u

ra
cy

Experimental Problem

M1

M2

M3

Fig. 14 Average accuracy
comparison over different
methods

Table 2 Simplified ANOVA tables of duration and accuracy

F p

Factors of composition time (a = 0.05)

Problem 0.487 .618

Method 3.685 .033*

Problem 9 method 0.705 .593

Factors of accuracy (a = 0.05)

Problem 0.456 .637

Method 16.344 .000*

Problem 9 method 0.722 .581

Asterisks indicate statistical significance at p\ 0.05

A service pattern model for service composition 257

123

www.manaraa.com

and prospect service on the performance of automated assignment reasoning, we

reduce the numbers of message alignments and prospect services in the second

and third scenarios respectively, and compare their reasoning time with the first

scenario. Therefore, two additional scenarios with different modifications are

given to these experiments and they are summarized in Table 4. These

experiments are conducted on a PC with an Intel Xeon 2.33 GHz CPU. The

reasoning process is iterated over 100 times for each case with different numbers

of candidate Web services for each prospect service, and the average execution

time is reported.

In the first experiment, 3 prospect services and 17 message alignments are

specified, and its results are shown in Fig. 15. It can be seen that the execution time

is almost linear to the number of candidate Web services. As the execution time of

reasoning process is sensitive to the number of facts, we show in Fig. 16 the number

of facts in the reasoning engine across different number of candidate Web services.

It shows that the growth of the numbers of facts is linear to the number of candidate

Web services, which explains the results of Fig. 15.

In the second experiment, we reduce the number of message alignments to nine

while maintaining the same number of prospect services in SalesCube service

pattern. The performance comparison between the first and second scenarios is

shown in Fig. 17. In Fig. 17, the execution time of the second scenario is slightly

less than that of the first scenario under different number of candidate Web services.

We further conduct Welch’s t test, shown in Table 5, which confirms that time

difference between the first and second scenarios is significant with their variances

being heterogeneous in Levene’s test. The reason is that fewer message alignments

result in lower loading of message flow validation and consistency checking. We

further analyze the performance differences of the first and second scenarios at

different inference stages using the case with 350 candidate Web services. Figure 18

Table 3 The result of LSD post hoc comparisons for duration and accuracy with method factor

Dependent variables MI MJ Mean difference (MI - MJ) Std. error Sig.

Composition time 1 2 9.83 6.819 .156

3 18.50* 6.819 .009*

2 1 -9.83 6.819 .156

3 8.67 6.819 .210

3 1 -18.50* 6.819 .009*

2 -8.67 6.819 .210

Accuracy 1 2 -21.94* 5.592 .000*

3 -31.11* 5.592 .000*

2 1 21.94* 5.592 .000*

3 -9.17 5.592 .108

3 1 31.11* 5.592 .000*

2 9.17 5.592 .108

Asterisks indicate significance level

258 C.-H. Lee et al.

123

www.manaraa.com

shows that the inference stages related with message alignment, namely MF

validation and consistency checking, have wider performance gap than other stages.

Especially, at consistency checking stage, the second scenario has significantly

higher performance improvement as fewer message alignments considerably reduce

the depth of traversing message flows. However, in all other stages, the performance

differences are really minor. This explains the slight performance improvement with

fewer message alignments.

In the third experiment, we concretize two prospect services and leaves only one

prospect service while maintaining seventeen message alignments in SalesCube

Table 4 The modifications and initial setting for three scenarios

Scenario Modifications Initial Setting

1st scenario: 17 message

alignments (MFs) and 3

prospect services (PSs)

Use SalesCube service pattern ?TypeOfED = TProdInv;

?TypeOfOut = TOrder;

?SkipConverByCurrency = True;

?SkipConvertByUnit = False;

?SkipDeriveData = False;

?SkipAggregateData = True;

?ChooseFormat = ‘Cube’;

?ChooseComputeOrder=’DeriveFirst’;

2nd scenario: 9 message

alignments and 3

prospect services

Use SalesCube service pattern but

remove mf1 to mf8 message

alignments

Same as the first scenario

3rd scenario: 17 message

alignments and 1

prospect services

Use SalesCube service pattern but

change CombineExtendedData

and ExtractData as two concrete

services

Same as the first scenario

807
923

1065
1246

1455

1685

1942

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350

E
xe

u
ct

io
n

 T
im

e
(m

s)

Number of Candidate WSs

17 MFs 3 PSs

Fig. 15 The execution time under different numbers of concrete Web services for each prospect service

A service pattern model for service composition 259

123

www.manaraa.com

service pattern. The performance comparison between the first and third scenarios is

shown in Fig. 19. It can be seen that the third scenario outperforms the first

scenarios as the third scenario has fewer prospect services, which result in fewer

service matchmaking facts and valid message flow facts. We further conduct

Welch’s t test, shown in Table 6, which confirms that time difference between the

first and third scenarios is significant with their variances being heterogeneous in

Levene’s test.

722

1372

2022

2672

3322

3972

4622

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50 100 150 200 250 300 350

N
u

m
b

er
 o

f
F

ac
ts

Number of Candidate WSs

17 MFs 3 PSs

Fig. 16 The number of facts under different numbers of concrete Web services for each prospect service

807

923

1065

1246

1455

1685

1942

783

910

1048

1227

1433

1660

1926

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Number of Candidate WSs

17 MFs 3 PSs

9 MFs 3 PSs

Fig. 17 The performance comparison between the first and second scenarios

260 C.-H. Lee et al.

123

www.manaraa.com

Table 5 The result of Welch’s t test for the first and second scenarios

Number of candidate

WSs

Degree of freedom for

scenarios

Degree of freedom for

error

F value Significance

50 1 131.099 169.933 .000

100 1 162.494 59.241 .000

150 1 215.445 300.715 .000

200 1 215.912 350.406 .000

250 1 215.395 420.106 .000

300 1 213.778 513.660 .000

350 1 214.901 213.654 .000

217

419

802

287

217

1942

217

418

800

275

216

1926

0

500

1000

1500

2000

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Inference Stages

17 MFs 3 PSs
9 MFs 3 PSs

Fig. 18 The performance comparisons between the first and second scenarios at different inference
stages for the case with 350 candidate Web services

807

923

1065

1246

1455

1685

1942

779

896

1038

1211

1416

1651

1905

0

500

1000

1500

2000

2500

50 100 150 200 250 300 350

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Number of Candidate WSs

17 MFs 3 PSs

17 MFs 1 PS

Fig. 19 The performance comparison between the first and third scenarios

A service pattern model for service composition 261

123

www.manaraa.com

8 Conclusion

Agility of enterprise receives much attention in recent years because businesses

today have to face dynamic and changing markets in an unprecedented way. SOA

technologies are critical means to improve agility of enterprise. The realization of

SOA entails the reusing and composing of existing Web services. In particular,

flexible Web service composition for a variety of applications enhances adaptability

and flexibility of information systems in support of enterprise agility. As mentioned

in Sects. 1 and 2, the existing CASE tools in IT industry and automated Web service

composition methods are not sufficient in providing flexible strategies of composing

Web services.

To address this issue, we proposed a meta-model, namely service pattern model,

to model an adaptable workflow template capable of embedding variations for a

variety of applications. In addition to prevalent variability management in SOA, the

unique features of service pattern model include prospect service and adaptable

workflow template. A prospect service has customizable data types for I/O

parameters and/or customizable predicates for preconditions and effects in its

nondeterministic specification. By concretizing its customizable part, a prospect

service can be instantiated into different types of abstract services according to

different requirements. Accordingly, an adaptable workflow template can be built

into a variety of applications because of the functional flexibility of prospect

services. The provision of message alignment and restriction rule in adaptable

workflow template supports message compatibility checking between cooperative

services and data type validation within services. These checking actions confirm

the validation of customizable data type assignment and smooth out data exchange

between cooperative services. Instantiation parameters provide a customizable

mechanism by which information system developers can build different composite

Web services with different functionalities from a service pattern by specifying

instantiation parameters. Furthermore, we develop a set of reasoning rules capable

of automatically inferring the values of instantiation parameters. These rules are

divided into three groups and executed separately in three stages.

Table 6 The performance comparisons between the first and second scenarios at different inference

stages for the case with 350 candidate Web services

Number of candidate WSs Degree of freedom

for scenarios

Degree of freedom

for error

F value Significance

50 1 139.418 212.257 .000

100 1 215.640 568.136 .000

150 1 198.657 531.364 .000

200 1 210.839 941.348 .000

250 1 215.736 1,222.012 .000

300 1 203.642 845.442 .000

350 1 211.901 1,401.561 .000

262 C.-H. Lee et al.

123

www.manaraa.com

We have conducted an empirical study to evaluate the performance of service

pattern model by using composition time and accuracy as performance metrics.

From experimental results, we can see that the service pattern approach shortens

composition time and improves composition accuracy over the manual composition

method. Also, we conducted three experiments to evaluate the performance of

automated reasoning process. The results show that execution time is almost

linearly proportional to the number of candidate Web services and the number of

prospect services and message alignments also slightly affect the performance of

automated reasoning method due to the loads of message flow validation and

consistency checking.

In practice, service pattern model and WS-data model can assist information

system developers, including business analysts and system designers, in efficiently

and effectively developing information systems using SOA. The development

process based on our proposed service pattern model can be separated into two

phases: service patterns design and service compositions construction. In the first

phase, system designers construct function-flexible service patterns. At the second

phase, business analysts elicit the business requirements and build concrete service

composition for the requirements by employing automatic reasoning method on the

service patterns. While there have been many methodologies proposed for manually

developing a business process, they are not applicable to the design and instantiation

of service patterns. Our ongoing work includes the design of such a methodology.

Acknowledgments This work was supported in part by the National Science Council in Taiwan under

Grant NSC 101-2410-H-110-015-MY2.

References

Abu-Matar M, Gomaa H (2011) Feature based variability for service oriented architectures. In: 2011 9th

working IEEE/IFIP conference on software architecture, 2011. pp 302–309

Akkiraju R, Srivastava B, Ivan AA, Goodwin R, Syeda-Mahmood T (2006) SEMAPLAN: combining

planning with semantic matching to achieve Web service composition. In: IEEE international

conference on Web services (ICWS 2006), 2006. pp 37–44

Amarouche I, Benslimane D, Barhamgi M, Mrissa M, Alimazighi Z (2011) Electronic health record data-

as-a-services composition based on query rewriting. In: Hameurlain A, Küng J, Wagner R, Böhm C,

Eder J, Plant C (eds) Transactions on large-scale data- and knowledge-centered systems IV, vol

6990. Lecture Notes in Computer Science. Springer, Berlin, pp 95–123. doi:10.1007/978-3-642-

23740-9_5

Anonymous (2007) An ontology to describe the achema information of a relational database. http://www.

dbs.cs.uni-duesseldorf.de/RDF/relational.owl. Accessed 18 March 2011

Barhamgi M, Benslimane D, Medjahed B (2010) A query rewriting approach for Web service

composition. IEEE Trans Serv Comput 3(3):206–222. doi:10.1109/tsc.2010.4

Chen K, Xu J, Reiff-Marganiec S (2009) Markov-HTN planning approach to enhance flexibility of

automatic Web service composition. In: IEEE international conference on Web services (ICWS

2009), 2009. IEEE, pp 9–16

Cummins F (2008) Building the agile enterprise: with SOA, BPM and MBM. Morgan Kaufmann,

Burlington

Döhring M, Zimmermann B (2011) vBPMN: event-aware workflow variants by weaving BPMN2 and

business rules. In: the 16th international conference on exploring modelling methods for systems

analysis and design (EMMSAD’11), 2011/01/01 2011. Lecture Notes in Business Information

Processing. Springer, Berlin, pp 332–341. doi:10.1007/978-3-642-21759-3_24

A service pattern model for service composition 263

123

http://dx.doi.org/10.1007/978-3-642-23740-9_5
http://dx.doi.org/10.1007/978-3-642-23740-9_5
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl
http://dx.doi.org/10.1109/tsc.2010.4
http://dx.doi.org/10.1007/978-3-642-21759-3_24

www.manaraa.com

Döhring M, Reijers HA, Smirnov S (2014) Configuration vs. adaptation for business process variant

maintenance: an empirical study. Inf Syst 39:108–133. doi:10.1016/j.is.2013.06.002

Doshi P, Goodwin R, Akkiraju R, Verma K (2004) Dynamic workflow composition using Markov

decision processes. Int J Web Serv Res 2(1):576–582

Erl T (2005) Service-oriented architecture: concepts technology and design. Prentice Hall PTR, Upper

Saddle River

Erl T (2007) SOA principles of service design. Prentice Hall PTR, Upper Saddle River

Fu JC, Bastani FB, Yen IL, Hao W (2009) Using service patterns to achieve Web service composition. In:

2009 IEEE international conference on semantic computing, 2009. pp 402–407

Geebelen K, Michiels S, Joosen W (2008) Dynamic reconfiguration using template based Web service

composition. In: the 3rd workshop on middleware for service oriented computing, 2008. pp 49–54

Gil Y, Ratnakar V, Kim J, Gonzalez-Calero P, Groth P, Moody J, Deelman E (2011) Wings: intelligent

workflow-based design of computational experiments. IEEE Intell Syst 26(1):62–72

Gottschalk F, Van Der Aalst WMP, Jansen-Vullers MH, La Rosa M (2008) Configurable workflow

models. Int J Coop Inf Syst 17(02):177–221. doi:10.1142/S0218843008001798

He Q, Yan J, Jin H, Yang Y (2008) Adaptation of Web service composition based on workflow patterns.

In: Bouguettaya A, Krueger I, Margaria T (eds) 6th international conference on service-oriented

computing (ICSOC 2008), 2008. Lecture Notes in Computer Science. Springer, Berlin, pp 22–37.

doi:10.1007/978-3-540-89652-4_6

Hwang SY, Hsieh YH, Lee CH (2012) Data providing Web service selection using Bayesian network. In:

2012 IEEE ninth international conference on e-business engineering (ICEBE’12), 2012. pp 111–116

IBM (2011) IBM business process manager. http://www-01.ibm.com/software/integration/business-

process-manager/. Accessed 21 June 2011

Kapuruge M, Jun H, Colman A (2010) Support for business process flexibility in service compositions: an

evaluative survey. In: 2010 21st Australian software engineering conference (ASWEC), 6–9 April

2010. pp 97–106

Kumar A, Yao W (2012) Design and management of flexible process variants using templates and rules.

Comput Ind 63(2):112–130. doi:10.1016/j.compind.2011.12.002

Lee CH, Hwang SY (2009) A model for Web services data in support of Web service composition and

optimization. In: 2009 world conference on services—I, 6–10 July 2009. pp 384–391

Medjahed B, Bouguettaya A, Elmagarmid AK (2003) Composing Web services on the semantic Web.

VLDB J 12(4):333–351. doi:10.1007/s00778-003-0101-5

Mietzner R, Leymann F (2008) Generation of BPEL customization processes for SaaS applications from

variability descriptors. In: 2008 IEEE international conference on services computing (SCC 2008),

7–11 July 2008. pp 359–366

Nguyen T, Colman A, Han J (2011a) Modeling and managing variability in process-based service

compositions. In: the 9th international conference on service-oriented computing (ICSOC), 2011a.

pp 404–420

Nguyen T, Colman A, Talib MA, Han J (2011b) Managing service variability: state of the art and open

issues. In: 5th workshop on variability modeling of software-intensive systems. pp 165–173

Oracle (2011) Oracle business process management suite. http://www.oracle.com/us/technologies/bpm/

bpm-suite-078529.html. Accessed 21 June 2011

Pistore M, Traverso P, Bertoli P (2005) Automated composition of Web services by planning in

asynchronous domains. In: the 15 international conference on automated planning and scheduling,

2005. pp 2–11

Pohl K, Böckle G, Linden F (2005) Software product line engineering, foundations, principles, and

techniques. Springer, Berlin

Ponnekanti SR, Fox A (2002) SWORD: a developer toolkit for Web service composition. In: the 11th

international conference on World Wide Web (WWW 2002)

Ruokonen A, Raisanen V, Siikarla M, Koskimies K, Systa T (2008) Variation needs in service-based

systems. In: 2008 IEEE sixth European conference on Web services (ECOWS 2008), 12–14 Nov.

2008. pp 115–124

SAP (2011) SAP NetWeaver business process management. http://www.sap.com/platform/netweaver/

components/sapnetweaverbpm/index.epx. Accessed 17 March 2011

Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) HTN planning for Web service composition using

SHOP2. Web Semant 1(4):377–396

Smirnov S, Reijers H, Weske M, Nugteren T (2012) Business process model abstraction: a definition,

catalog, and survey. Distrib Parallel Databases 30(1):63–99. doi:10.1007/s10619-011-7088-5

264 C.-H. Lee et al.

123

http://dx.doi.org/10.1016/j.is.2013.06.002
http://dx.doi.org/10.1142/S0218843008001798
http://dx.doi.org/10.1007/978-3-540-89652-4_6
http://www-01.ibm.com/software/integration/business-process-manager/
http://www-01.ibm.com/software/integration/business-process-manager/
http://dx.doi.org/10.1016/j.compind.2011.12.002
http://dx.doi.org/10.1007/s00778-003-0101-5
http://www.oracle.com/us/technologies/bpm/bpm-suite-078529.html
http://www.oracle.com/us/technologies/bpm/bpm-suite-078529.html
http://www.sap.com/platform/netweaver/components/sapnetweaverbpm/index.epx
http://www.sap.com/platform/netweaver/components/sapnetweaverbpm/index.epx
http://dx.doi.org/10.1007/s10619-011-7088-5

www.manaraa.com

Yang L, Dai Y, Zhang B (2009) Business-pattern-wvolution based service composition with flexibility.

In: Sixth Web information systems and applications conference, 2009. IEEE, pp 132–135

Zeng L, Ngu A, Benatallah B, Podorozhny R, Lei H (2008) Dynamic composition and optimization of

Web services. Distrib, and Parallel Databases 24(1):45–72

A service pattern model for service composition 265

123

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

	c.10257_2014_Article_251.pdf
	A service pattern model for service composition with flexible functionality
	Abstract
	Introduction
	Literature review
	A motivating example
	Service pattern model
	Prospect service
	Adaptable workflow template
	Service pattern
	Service pattern instantiation

	Automated instantiation parameter assignment
	The system architecture
	Matching rules in the first stage
	Alignment rules in the second stage
	Goal checking rule in the third stage

	Model evaluation
	Experiment design
	Data analysis and discussion

	The performance evaluation of automated instantiation parameter assignment
	Conclusion
	Acknowledgments
	References

